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COMPARING STOCHASTIC SYSTEMS USING REGENERATIVE

SIMULATION WITH COMMON RANDOM NUMBERS*

by

Philip Heidelberger
IBN Thomas 3. Watson Research Center

and

Donald L. Iglehart
Stanford University

1. Introduction

Suppose we have two stochastic systems (perhaps alternative designs

for a new system) which are to be compared. Assume that these systems

are represented by two regenerative processes X(i) = (X
~
(i) : t > 0)

for i = 1, 2; see CRANE and LEMOINE (1977) or IGLEHART (1978) for a

discussion of regenerative processes and their role in simulation. Under

mild regularity conditions the distribution of X
~
(i) converges to the

distribution of some limiting random variable (or vector) X(i); this type

of convergence is known as weak convergence and written X
~
(i) *X(i)

as t t ~~~. Simulators often speak of X(i) as the steady-state configura-.

tion of system i and take as the performance criterion of the system

= E (f~(X(i))), where f~ (i = 1,2) are given real-valued functions

defined on the state space, E(i), of process X(i). When comparing the

two systems, we wish to estimate the sign of r
1 

- r
2 

by constructing a

confidence interval for the quantity .

*Thi$ research was supported by National Science Foundation Grant
MCS-23607 and Office of Naval Research Contrac6t NOOO Ii~-76-C-O578.
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Simulation folklore suggests that “counnon random numbers” be used

in this situation in order to reduce variance; see FISHMAN (1973), Section

11.7, and KLEIJNEN (l971~) for a discussion of this technique. The basic

idea here is to induce a positive correlation between the two systems by

simulating the two systems with a common sequence of random numbers. Not

only does one save the computer time required to generate the second

sequence of random numbers (which would be required if the two systems

were simulated independently), but the confidence interval for r1 
- r

2

will be shorter provided the positive correlation mentioned above is

achieved. Inspite of the generally knowledged appeal of this technique,

we know of few published studies which actually carry out the technique

and document the savings to be expected; one such study is that of

MITCHELL (1973).

When the processes being compared, ~(l) and ~(2), are regenera tive,

we are able to provide a rigorous (asymptotic) analysis of the comparison

technique described above . This we do in Section 2 of the paper. While

positive correlation is normally expected when using common random numbers,

nothing is guaranteed in this respect. One always enjoys the economy of

having to generate only half as many random numbers, however, the variat~ e

reduction achieved may be minimal or even a variance addition. Conditions

for obtaining the desired positive correlation are discussed in Section 3.

Section 1~ is devoted to several simple stochastic systems vhich were

actually simulated. Here we are able to see exactly what common random

numbers buys the simulator in terms of increased computational efficiency .

Finally , in Section 5 we state our basic conclusions about the use of common

random numbers in comparing stochastic systems using regenerative simulation.



2. Comparing Regenerative Processes

Let X(l) and X(2) be the two regenerative processes introduced

in Section 1. Assume X
~

( i) =~ X(i) as t t ~ for i = 1,2. Given

E(i) —+R, we wish to construct a confidence interval for r
1 

- r2.

The regenerative processes arising most commonly in simulations are

discrete and continuous time Markov chains and semi-Markov processes all

of which are positive recurrent. An efficient method for reducing the

simulation of a continuous time Markov chain (M.C.) to the simulation of

a related discrete time M.C. was presented in HORDIJK, IGLEHART, and

SCRASSBERGER (1976). The same method can be applied to semi-Markov

processes; see IGLEHART ( 1978) . In our simulations presented in Section ~

this method is used. Hence to focus our attention on the comparison

problem at hand, we assume that both X(1) and ~(2) are irreducible,

aperiodic, positive recurrent Markov chains in discrete time. Under

these conditions Xn(i) =~ X(i) 
as n t ~~, where X(i) has the stationary

(and steady-state) distribution ~c(i) = (~r~ ( i )  : j € E
’

) .  That is,

PCX (i) = j) = ~t~~(i) for j € E(i). Then

ri = E(f~(X(i))) ~ f~(j) it~~( t)  , i = 1,2
J€E~

Assume for this discussion that E = E(l) = E(2) and that the state

O £ E; this is no restriction on our method only a notational convenience.

Then let X0(i) 0, T~(i) = 0, and define the mt~ entrance to state o

by X(i) to be

o~~~~ / / .
~~

/
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T (i) = inf(n > Tm 1 (i) : X (i) = 0) , m >  I

The times between such entrances are denoted by 
~~ 

i) = T (  i) - T~~ 1( i),

m> 1, and referred to as the lengths of the 0-cycles for the j
th process.

Next we compute the area under the function f
i
(X( i)] in the m

th cycle:

T (i)—1

‘
~ (i) = f (X (i)] , m �  ~ -m n=T (i) ~

m— l

A basic sequence of random variables for the regenerative method is

~~J 
i) : m 

~ 
1), where

Z ( i )  = Y (i) - r . r (i) m > 1
m m ~. m ‘ —

The regenerative method works because the successive 0-cycles are

independent and identically distributed (i.i.d.), which implies that

the Zm(i) ‘s (m2 1) are i.i.d., and the following ratio formula holds

provided E (If~(X(i))I) < ~ :

r
i = E0

(Y 1(i))/E0(r1( i) )

The symbol E0
(.) is short for the conditional expectation E(.1X

0(i) = 0).

For more background on the regenerative method see CRANE - and LEMOINE

(1977) or IGLEHART ( 1978) . Let = E0(Z~(i)) 
which we assume is

positive and finite. Then two central limit theorems (c.l.t.. ’s) follow

from the regenerative structure of these positive recurrent Markov chains.

Ii.
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One is based on the number of 0-cycles simu lated and the other on the

number of steps of the M.C. simulated. We define two point estimates

of r~ by

~~(n) =( .
~ ~~~~~~~~~~~~ karid
N-l

~(N) =~~~ ~~ 
f
L
[Xk(i) 1 ,

k=O

where n is the number of 0-cycles simulated and N is the number of

steps of the N.e. simulated. The two c.l.t.’s are the following:

(2.1) nV2C~ j(n) - r
i]/aj/E0

(ri(i))) =~ N(O,l)

and

(2.2) N
1
~
/’2

trj(N) - r
i

)/ ( ~~/E~~2f r~( i)J) ~ N(O, 1)

as n and N f ~~~. Either (2.1) or (2.2) can be used to construct a

confidence interval for r
i.

Now suppose we wish to construct a confidence interval for

by simulating the two processes X(l) and X(2) independently; i.e.,

independent sequences of random numbers will be used to generate the

sample paths of the two processes. Form the vectors = (r1, r2) 
and

~(N) = (~ 1(N), ~2(N)). 
Then we can easily obtain from (2.2) the bivariate

c.t.t.

(2.3) NV2(~ (N) - E~ 
=~N (2, A) ,

5
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where N(9, ~) 
is a two-dimensional normal vector with mean vector

9 = (0,0) and covariance matrix

/ a~/E0( r 1(l ) ) 0

A = 

0

An application of the continuous mapping theorem [BILLINGSLEY (1968),

Theorem 5.].] to (2.3) yields the following c .l.t. which can be used to

construct a confidence interval for

(2. !i~) N~
”2 f (~~1(N) - ~2(N) ) - (rl 

- r
2)1/o =~ N(O,1) ,

where

2 2
2 a1 a2a = E0(t1( l) )  +

A c.1.t. comparable to (2.li) but based on 0-cyc les can also be obtained.

Our goal in using common random numbers to generate the sample

paths of X(l) and X (2) is to produce a shorter confidence interval

for r
1-r2 

for the same length of simulation run (number of steps of

the Markov chains generated). In other words we seek a c.l.t. similar

to (2.I~) but with a smaller value of a. To accomplish this we generate

• the bivariate N .e. ~ = (X~ : n~~ 0), where X~ = (X~(I), X~(2)). At

each jump of the process K the same random number is used to generate

of the process K are seen to have the same finite-dimensional

- 

~~ the jumps of the two marginal chains X(l) and X(2). The margirials

6
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distributions as the original chains ~(l) and ~(2); however, the

marginal chains are now dependent. The state space of the chain K

is denoted by F which is a (possibly proper) subset of E x E. We

assume here that the chain ~ is also irreducible, aperiodic, and positive

recurrent. These conditions are not automatic but will usually hold for

practical simulations. Furthermore, we assume for convenience that

(0,0) € F and use that state to form regenerative cycles. Note that

X ~~X as n — ‘a and the marginal distributions of X are the same as
n

those of XC I) and X(2), namely, (n~(i) : J € £3 for i = 1,2. For

any real-valued function f : F —~R satisfying E~ f f(X)[) <~~ the

regenerative method can be applied to K to estimate E(f(Xfl. Let

= (0,0) and form (0,0)-cycles which begin at the times T0 = 0,

I = i n f(n  > I X = (0 0)) in> 1.in m— l n ‘ ‘ —

Also let T = I - I in >  1 be the length of the m
th 

cycle and
in in rn— i’ — ‘

T
nt-i

Y’(i) = 
~ 

f
i

(X ) , i n>  1
n=Trn—i

Here the f-functions are f(j,k) = f1(j) 
and f(j,k) = f2(k). Set

Z~(i) Y’(L) - ~~ r
~
. Since the ratio formula still holds for the

process ~~ E(0 0) (Z~ (i) ) = 0 for i = 1,2 . Let

= E(0 0) CZj ( i) Z~ ( i) ) , i,j  = 1,2

7



which we assume is f in i te  and non-zero. Since the vector s

= (Z ~ ( 1) , Z~ (2) ) are i .i.d., the s tandard c . l.t. yields

/ n
(2.5) ~

_ li 2 
~~

, 

~~~~~N(9, ~ )
n~ l

where E = (a~~). Just as we are able to go from (2.1) to (2.2) in

the one-dimensional case it is possible to obtain from (2.5) the c .l.t .

(2.6) NhJ2(~(N) - ri =~N (O,B)

where = [c~~~ E~~~ 0) (T l) ) .  The argument leading to (2 .6) is essentially

the same as that given by CHUNG (1960), Theorem 16.1. Again using the

continuous mapping theorem in conjunction wi th (2 .6) yields

( 2 . 7)  N~~
2 C ( ~~1(N ) - ~2( N ) )  - (r l~

r2) )/v =~~N(O , l)

where

v2 
= (a 11 + a22 - 2a12)/E (0 0) (11)

A c.I.t. comparable to (2.7) but in terms of ri (0,0)-cycles of X can

also be obtained. Now consider the marginats of (2.6) in conjunction

with (2.2). Since the marginals of the chain X have the same stochastic

structure as the chains X(l) and X(2) considered separately, these

two c I t ‘s must be identical Hence

•~~~~TITTT~ 
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2a. a
1 11

E0(t1
( i) )  = E

(0 0)
(T
1)

Thus upon comparing the constant a2 in (2.14.) and v
2 

in (2.7) we

conclude that v2 < ~
2 if and only if a~2 > 0. In Section 3 we will

examine conditions on the functions f~ and processes X(i) which

guarantee that ‘12 > 0.

The measure of variance reduc tion we use is

2 2 2R = a / v

2
So, for exam,le, if R = 0.5, then only half as many steps of the Markov

chain K need be simulated to ob ta in a confidence interval of specified

length for r1-r2 as would be required when simulating X(1) and X(2)

independently . In addition, of course , on ly one stream of rand om numbers

need be generated. While we have worked here with discrete time Markov

chains, the same method can be used for continuous time Markov chains ,

seuii-Narkov processes, and discrete time ~4arkov processes with a general

state space. The examples treated in Section Ii. illustrate the effectiveness

of the method ‘when applied to a variety of these stochastic processes.

_ 
____ 

I



3. Guaranteeing Variance Reductions -

In this section we investigate conditions under which the variance

reduction obtained when > 0 can be guaranteed. Our major result is

that if f
1 

and f2 are monotonic functions (in the same direction)

and if ~ (1) and ~ (2) satisfy a stochastic monotonicity condition,

then > 0. This result is related to other work on monotonicity

arid antithetic variates; (see ANDREASSON (1972), MITCHELL (1973), and

KLEIJNEN (19714.)). When using antithetics (if U is a random variable

uniformly distributed on [0,1] then U and 1-U are said to be an

antithetic pair) one is generally interested in only one stochastic

process, not in comparing the output of two or more processes. Also in

the antithetic scheme variance reductions are obtained by creating negative

correlation rather than the positive correlation we seek here. If only

one process is to be considered, the sample paths of X(l) and X(2)

may be generated using antithetic streams of randàm numbers. Under

proper conditions the results of this section may then be applied to

guarantee the desired negative correlation (provided that the two dimen-

sional process K is regenerative).

The notion of associated random variables can be used to guarantee

nonnegative correlation. The following definition and properties may be

found in ESARY, PROSCUAN and WALKIJP (1967).

(3 . 1) DEFINITION. Random var iables T = (T 1, ..., T~) are said to be

assoc iated if

cov(f(T), g(T)) >0

10
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for all nondecreasin~ functions f and g for  which E ( f ( ~~) ) , E (g ( ~~) ) ,

and ECf(T) g(T)) exist.

(3.2) PROPERTY. Any subset of assoc iated random variables are associated .

(3 . 3)  PROPERTY . If two sets of associated random variables are independent

of one another, then their union is a set of associated random variables.

(3.14.) PROPERTY . The set consisting of a single random variable is

associa ted .

(3.~~) 
PROPERTY . Nondecreasing functions of associated random variables

are associated .

A class of p rocesses for  which nonnegative correlation can be

guaranteed is stochastically monoton e Markov chains (s .m.ui.c.). This

class was introduced by DALEY (1968) and includes many of the basic

queueing models such as the waiting time process in the Cl/G/l queue

arid the embedded Markov chains used to study the N/Gil and GIN/s

queues. In the following definition let i be a fixed index.

(3 .6)  DEFINITION. Let ~(i) = (X~(i), n ~ 
0) be a real valued Narkov

process with initial distribution P~(x) = P(X0(i) < x) and transition

function P~(x,A) = P(X~~1(i) € A !Xn(i) = 
x) (for measureable sets A ) .

X(i) is said to be a stochastically Monotone Markov chain if for every

y, P~(x , (-oo,y]) is a nonincreasing function of x.

11
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Define the inverse distribution functions P~~(.) and

by

PT 1(u )  = inf(y : P~(y) > u) ,

P~~ ( x ,u) = in f (y  : P1(x , ( -co, y] )  
~ 

u)

Notice that if X(i) is a s.m .m.c. then P ’(x,u) is an increasing

function in both arguments. This fact will enable us to show that for

each n > 0 (X
0(1), . .. , X~(l), X0(2), ..., X~(2)) are associated .

We shal l  henceforth assume that the sample paths of X(i) are

generated on the computer using the inverse transformation scheme

(3.7) X
0(i) = F~~(u)

(5 .8) X~( i )  = P;’(x5 1 (i), U~) , n 1

where U (U , n > 0) is a sequence of pseudorandom numbers. ~ is,

of course, assumed to be a sequence of i.i.d. random variables uniformly

dist ributed on (0,11.

(3.9) THEOREM. If X(l) and X(2) are both stochastically monotone

Markov chains with sample paths generated by (3.7) and (3.8), then for

each n > 0 (X0(l), ..., X~(l), X0(2), ..., Xn(2)) are associated random

variables .

12
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PROOF . The proof is by induction.  For n = 0 (3 . 14.) implies that CU 0 )

is associated and since P~~(U0) 
is a nondecreasi ng func tion of U

0 
for

each i, (3.5) yields that (X
0
(1), X0(2)) 

are associated . Assume now

that (X
0(1), ..., X

1~(l), 
X
0(2), 

... , X
0
(2)) are associated. Since

is independent of this set, (X0(1),... , X~(l), X0(2),...,X~
(2), U~~1}

are associated (by (3 .3)) .  The map which takes these random variables

into (X
0(l), ..., X1~(1), X~~1(1), 

X0(2), ... , X~(2), X~~1(2)) is non-

decreasing because X(l) and X(2) are both s.m.ni.c.’s. Property (3.5)

then yields the final result . 0

The previous theorem can now be used to show that when simulating

s.m.m.c.’s using common random numbers a reduction in variance is obtained.

(3.10) THEOREM. Let X(l) and X(2) both be stochastically monotone

Markov chains with sample paths generated by (3.7) and (3.8). Let f1

arid f2 
be nondecreasing functions . If

2
(i) E (r ) < c o

r I - I
( ii) Ej( ‘5E !f icx nC i ) I ) 2

J~ < , 
for i = 1, 2,

n=T• m-l

then a~~~>0.

• 13

_ _ _  
_ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~ •



PROOF. Let S
~
(i) = 

K~O 
f~(~~ (i)). S~(i) is then a nondecreasing 

- 

~ Ifunction of associated random variab les so that 
~~~~~~ 

S (2)) are

associated. Therefore cov(S (l), S~(2)) > 0. (This covariance exists

and is finite by (i) and (ii), see SMITH (1955).) Theorem 8 of SMITH

(1955), which may be app lied under assumptions (i) and (ii), implies that

lirn ~ cov(S~(1), S~(2)) = a12 ,n —~

so that a12 > 0. 0

If f1 and f
2 

are both decreasing then a12 > 0, but if f1

and f2 are monotonic in opposite directions, that is if one is increasing

and the other is decreasing, then a12 < 0 (in this case antithetics

should be used to ensure a12 > 0).

lii,

-_r -~~
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ii.. Examples

In this section we investigate the magnitude of variance reductions

obtained when using common random numbers in simulations of some simple

stochastic models. These models are the waiting time process in the

N/C/i queue and the queue length processes in the finite capacity N/N/s

queue, repairman problem, and a repairman problem with two repair facilities

(sometimes called the central server model). For these models the method

was able to produce quite substantial variance reductions. In addition

we investigated the use of common random numbers when comparing two

different (s,S) inventory policies . To our surprise variance reductions

were slight in this case.

The Sing le Server Queue

Let W (i) be the waiting time of  the nth customer in the ith

GI/G/1 queue which we wish to study. Let (S(i) : n > 0) be the

sequence of i.i.d. service times (with mean and distribution

function Gi) 
and (A ( i) it > 1) be the i.i.d. interarriva]. times

(with mean and distribution function Fi) 
for this queue. Set

X (i) = S~~1(i) - A~(i). The waiting times are then defined by

W0(i) = 0

W 1( i) = [w~( i) + x 1( i) 1~ n > 0 -

where for any real number a, [al + denotes the maximum of 0 and a.

Let = \/I.&j
. If < I then W~(i) ~~W(i). We shall be interested

15 
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in estimating E(W(1)) - E(W(2)). Recall that E(W(i)) is finite if

E(X ( i)
2) < c o, see KIEFER and WOLFOWITZ (1956). Let (Va

: n 
~ 
0) and

n > 1) be independent sequences of i.i.d. uniformly distributed

random variables which generate the service arid interarrival times by

(~ .1) S (i) = C~~(V~) , ~ ? 0

(14.2) A~(i) = ç
’(U) ~ i t >  1

where G 1 and F 1 are the inverse distribution functions of G~

and F
1 

respectively . The following theorem states conditions under

which the two dimensional process W = ((W~(l), W~(2)), n~~ 0) will be

regenerative.

(14..)) THEOREM. Let < 1 and E{X~(i)
2) < c o  for I = 1,2. If the

joint distribution of (X~(l), x~(2)) has a positive density in an open

neighborhood of (0,0), then W is regenerative.

PROOF. Let € > 0 be given and consider the discretized waiting time

processes

W~(i) = 0

• W~~1(i) = (W~(i) + X~~1(i)
]~ , it > 0

where X~(i) = k€ if (k- 1)€ < X(i) < k€ for some integer k. The

• 
process = ((W~(1), W~(2)), it>  0) is a Narkov chain with a countable

16
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state space. Since X
0(i) < 

X~(i), W~(i) < W~(i) so that returns to

(0,0) occur more frequently for W than for W~. The condition on

the joint distribution of X(1) and X (2) ensures that for small.

enough € , W~ will be irreducible and aperiodic (so that

i~~(i,j) 
f l - c o  

P(W~(l) = 1€, W~(2) = id exists). It therefore

sufficies to show chat W~ is positive recurrent.

Let T~ be the mth time enters (0,0). We seek to show

that E(T~) < co and since i~~(O ,O) = 1/E(T~ ) we need on ly show

nE(O,0) > 0. Let € be chosen small enough so that the traffic

intensity, p~, 
in each discretized queue is less than one and so that

< c o . Then W~(i) =~W~(i) and E(W~(i)) < co. Since < 1 ,

(14..14.) 0<4(0) = lint P(W~(l) = 0)

= lim ~~ P(w~(1) = 0, W~(2) = k€)  .

fl -4 co k=O

Then

P (W~ = (0 , lc€)J < P(w~(2) = icc )

< P(W6(2) > k€)

< P(wE(2) � kd ,

the last inequality being true because the Cl/C/i queue is a s.m.m.c.

But ~ P(W~(2) > Icc) <c o  (since E(W~(2~) < cc) so that by the dominated
k=0

convergence theorem we stay interchange limits arid summation in (14.14.).

Therefore

17 
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o < it~(O k)

and since i~~(i,j) is either 0 for all i and j or greater than

O for all i and I it must be true that lt€(O,O) > 0. 0

This theorem may be extended to multiple server queues and to

situations in which more than two queues are being considered. In

addition these queues possess the proper monotonicity characteristics

to ensure that a~~ > 0.

The first two sections of Table I report variance reductions when

two N/G/l queues are compared. The service times were chosen to have the

Weibull distribution:

G. (x) = 1 - exp(-(y 1x)~~~) x > 0

for constants r~, 
cz~ > 0. If = 1, G . reduces to the exponential

distribution. The figures in Table 1 are point estimates and 90% con-

fidence intervals based on N independent replications of C cycles of

the two dimensional process W. For example, in the section of Table I

we estimate R
2 to be .1142 (and a 90~ confidence interval for R2 is

.114.2 + .015). Notice that cycles for W are not much longer than those

of the individual processes. In fact for the processes compared in the

first section of Table 1 it can be shown that W (l) <W (2) for all. it

80 that = Tm(2)~ 
The random number generator described in LEARNONTH

and LEWIS (1973) was used for all simulations reported in this paper.
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Continuous Time Markov Chains

The use of common random numbers in comparing two or more continuous

time processes is limited by problems in the “synchronization” of the

random number streams (see KLELINEN (19714). This problem can be overcome

in the case of continuous time Narkov chains and semi-Markov processes

by transforming the continuous time processes into appropriate discrete

time Markov chains. Details of this transformation are given in HORDLJK,

IGLEHART and SCHASSEERCER (1976). Once in discrete time common random

numbers may be used to generate the sample paths of the two processes.

This procedure has been used to investigate variance reductions for

three finite state space continuous time Markov chains. Because the

state spaces are finite the multidimensional processes will always be

positive recurrent (assuming irreducibility).

The first two examples, the queue length processes in the finite

capacity HIM/s queue and the repairman problem with spares are both

birth and death processes. The finite capacity N/N/s queue has birth

and death parameters

0 < i < M

=
0 , i .?M

1< i < s

I
~i

=

s~~, s < i ~~~M ,

20



where M is the capacity of the queue. For this model let p =

The repairman problem has parameters

n7~ , O < i < m

=

(n+m-i)~ , a < i. < uwn

ilL , l < i < s

‘L i =
s< i nwn

where n is the number of operating units, iii is the number of spare

units, s is the number of repairmen and \ and ~ are the fa ilure

and repair rates respectively of the units. Calculated variance reduc-

tions for these two models are reported in Tables 2 and 3. Ic should

be noted that for our choice of parameters X~( 1) < X~(2) for all n > 0

provided that ](
o(l) = X0(2) = 0. These are examples in which the two

dimensional process is not irreducible. In such cases attention must be

focused on only one irreducible class of states.

The next example is a multidimensional repairman problem. This

example can be modelled by the closed queueing network pictured in

Figure 1. A more detailed description of this model may be found in

IGLEHART and LENOINE (19714). The parameters chosen for this model were

it = 10, m = 14, ~.. = 1, p = .2, 
~2 = 2, ‘L2 = ‘~ ‘L l = 1. The effect of

varying s
~ 

on the mean number of failed units was studied . Since each

individual process has a two dimeusional state space, a four dimensional

21
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TABLE 2

Calculated Variance Reductions for Comparing Two Finite Capacity

N/N/s Queues, Capacity N = 15

Process Process Process 2
Parameters 1 2 r1 

r
2 

R R

5 5
J.L 10 5 1.00 1.33 .088 .296
s 1 2
p 0.5 0.5

5 5
4.1 10 3.33 1.00 l.71i. .1148 .385
5 1 3
p 0.5 0.5

5 5
5 3.33 1.33 1.71i. .101 .317

s 2 3
p 0.5 0.5

9 9
u 10 3.33 5. 11 5.87 .032 .179
s 1 3
p 0.9 0.9 

_____________________________
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TABLE 3

Calculated Variance Reductions for Comparing

Two Repairman Problems, n = 10, m = li , A = 1.

Process Process Process 
2

Parameters 1 2 r1 
r2 

R R

6 14 3.08 3.147 .060 .21i.5

s 2 3

6 3 3 .08 . 3.89 .103 .321

$ 2 14

4.). 6 2 3.08 14.75 .192 .1432

s 2 6

4.1 14. 3 
• 

3.147 3.89 .069 .263

S 3 14.

_ _ _ _ _ _  _ - 
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Repairman Problem with Two Repair
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st ate space is obtained when using common random numbers. The third

section of Table 1 reports the estimated variance reduction for this

example. The expected cycle length for the four dimensional process is

much larger than for  either of the two dimensiona l p r ocesses, but it is

not as long as we had originally feared. Of course the expec ted cycle

length is a function of the return states chosen and care must be taken

so that regenerations do not occur too infrequently .

Inyentory Policies

Our final example is comparing two different (s,S) inventory

policies. The use of couuiion random numbers should be particularly

well suited to inventory problems since it intuitively seems better

(i.e., less variable) to compare differen t policies by subjecting them

to the same, rather than independent, demand processes . However, the

figures in Table Ii. indicated that very little variance reduction is

obtained for this model. This apparently is due to the fact that (s,S)

policies grossly violate the monotonicity conditions of the previous

section.

Let X~(i) denote the level of stock at the beginning of the nth

period and let D~ be the demand during the nth period. Then

S if X (i) - D  < s
n it ,

X ( i ) =it-. . 1
X (i )_ D  if X ( i ) - D  < 5 .
it i t ’  it i t —

_ _ _ _  _  _ _ _ __ _  
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TABLE 14

Calculated Variance Reductions for Comparing Two

(s ,S) Inventory Policies , r~ = E[x(i)]

Process Process Process 2
Parameters 1. 2 Et r 1(l)] E(-r

1(2)] E[-t1) R R

s 6 5
S 10 11 3.00 14 .00 9.21 .959 .979
r 8.33 8.38

Demands Geometric .5

s 6 14
S 10 12 3.00 5.00 11.11 .963 .981
r 8.33 8. liO

Demands Geometric .5

s 5 14
S 11 12 14.00 5.00 15.21 .967 .9814-
r 8.38 8. liO

Demands Geometric .5

s 6 5
S 10 11 2.59 3. li-6 7.75 .959 .980
r 8.39 8.142

Demands Poisson 2

s 6 Ii-
S 10 12 2.59 14.32 9.21s. .961 .980
r 8.39 8.143

Demands Poisson 2

s 5 14
S 11 12 3.146 14.32 12.89 .973 .957
r 8.142 8.li3

Demands Poisson 2

- I

26
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We choose demands to have either a geometric or Poisson dis t r ibut ion with

parameters .5 and 2 respectively .

The discontinuity at s prevents us from obtaining strong positive

correlation (and hence good variance reductions). If X~(I) is near

but X~(2) is well above 
~2 

then, with high probability , the first

process will increase while the second will decrease. This tends to

create negative correlation rather than the desired positive correlatton.

We were ab le to increase the varianc e reductions somewha t by us ing antithetics

when in certain regions of the two dimensional state space. However, the

generality of such a procedure seems limited since it ma’ be quite difficult

and costly to identify regions of this type which would ~.ead to good

variance reductions.

27 
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5. Conc lusions

In this paper we have shown how the method of common random numbers

may be used in certain regenerative simulations to obtain variance reduc-.

tions. In some cases substantial. variance reductions have been obtained,

but it seems reasonable to expect that as the complexity of the processes

being simulated increases the amount of variance reduction will. decrease.

It is anticipated that the primary difficulty in the implementation of

this method will be the relatively long expected cycle length for the two

d imensional process X. Since the validity of the confidence intervals

formed will in general depend upon the number of cycles simulated, the

method is not suggested for use unless the expected cycle length is short

enough so that an adequate number of cyc les can be simulated within one ’s

budget constraint. If preliminary simulation runs indicate that the

expected cycle length will be excessive (or that the use of the method

will result in a variance addition), it is then suggested that independent

simulations be performed.

I
28 
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